

ETTL ENGINEERS & CONSULTANTS INC.



GEOTECHNICAL • MATERIALS • ENVIRONMENTAL

June 13, 2005

James Rice NRS Consulting Engineers 4415 Jefferson Ave. Texarkana, Arkansas 71854

SUBJECT: Magnolia Economic Development Buildings Magnolia Business Park, Magnolia, Arkansas Geotechnical Investigation ETTL Job No. G1737-05

Dear Mr. Rice:

Submitted herein is the report summarizing the results of a geotechnical investigation conducted at the site of the above referenced project. An executive summary was issued on June 3, 2005.

If you have any questions concerning this report, or if we can be of further assistance during construction, please contact us. We are available to perform any construction materials testing and inspection services that you may require.

Thank you for the opportunity to be of service.

(2) NRS Consulting Engineers

Sincerely, ETTL Engineers & Consultants Inc.

Arthur M. Campos Senior Project Manager

Stephen R. Richards, P. E. Vice President



#### HOME OFFICE:

Distribution:

1717 East Erwin Street Tyler, Texas 75702-6398 Office: (903) 595-4421 Lab: (903) 595-6402 Fax: (903) 595-6113 **TEXARKANA:** 

210 Beech Street Texarkana, Arkansas 71854 Office: (870) 772-0013 Fax: (870) 216-2413 LONGVIEW:

707 West Cotton Street Longview, Texas 75604-5505 Office: (903) 758-0402 Fax: (903) 758-8245

SOCIETY MEMBERSHIPS: AS.T.M. A.C.I.L. T.C.E.L. A.S.C.E. T.S.P.E. AI.C.H.E. N.S.P.E. AI.C.E. A.C.S. A.C.I. A.G.C.

Ø 003

ETTL ENGINEERS & CONSULTANTS INC. TYLER - LONGVIEW - TEXARKANA

GEOTECHNICAL INVESTIGATIONS

Geotechnical Investigation Magnolia Economic Development Buildings Magnolia Business Park Magnolia, Arkansas

Submitted to

NRS Consulting Engineers Texarkana, Arkansas

Prepared by

ETTL Engineers & Consultants Inc. Tyler, Texas

June 2005

.

CONSTRUCTION TESTING

GEOTECHNICAL INVESTIGATIONS

### **EXECUTIVE SUMMARY**

This Executive Summary is provided as a brief synopsis of the specific recommendations and design criteria provided in the attached report. It is not intended as a substitute for a thorough reading of the report in its entirety.

### **Project Description**

Two new 12,000 sf, single-story preengineered metal buildings with steel framing and partial brick veneer. The north structure (Planning & Development building) will be used for offices and the south structure (Career Development building) for education. Up to 2' of cut in the northwest corner of each building to 2' of fill in the southeast will be required to construct the pads. Parking areas and drives will also be provided on the east and south sides of the complex.

### Site Description

Open and slopes down moderately from northwest to southeast within the building limits.

### Depth & Number of Borings

4-25' deep and 2-15' deep for the buildings and 4-5' deep for parking

### Soils Encountered

Predominantly soft to very stiff sandy lean clay (CL). A 10' thick zone of medium dense sandy silt (ML) was encountered in borings B-1, B-2, B-3 & B-6 at 8' to 13' deep. Atterberg Plasticity Indices of the tested soils range from 8 to 27.

#### Groundwater Depth

Phreatic surface predicted to vary between 11' and 13' deep, probably confined below the clay soil at 13' deep.

#### **Recommended Foundation Type**

Shallow spread footings

#### Allowable Gross Bearing Pressure

2,000 psf for isolated footings or 1,500 psf for strip footings. Footings should be founded at a minimum depth of 2 feet below finished subgrade.

#### **Building Subgrade Preparation**

- Remove the existing vegetation, topsoil and loose or soft soils. Cut to proposed subgrade as required.
- Scarify the exposed subgrade and recompact.
- Place select fill as required.

#### **Construction Considerations**

The surficial soils at most portions of this site may become unstable when wet necessitating stabilization or removal and replacement of wet/soft soils to facilitate construction.

GEOTECHNICAL INVESTIGATIONS

### Pavement

Scarify and recompact subgrade. Place asphalt or concrete pavement section.

# Pavement Options - Light Duty

| Туре            | Surface/Base Thicknes                                    | S                        |
|-----------------|----------------------------------------------------------|--------------------------|
| Flexible HMAC   | 2" Surface<br>(Type 2 or Type 3)                         | 6" Crushed Stone<br>Base |
| Full Depth HMAC | 2" Surface<br>(Type 2 or Type 3)<br>& 3" Binder (Type 2) | No Crushed Stone<br>Base |
| Concrete        | 5*                                                       | No Crushed Stone<br>Base |

# Pavement Options - Medium Duty

| Туре            | Surface/Base Thicknes                                    | S                        |
|-----------------|----------------------------------------------------------|--------------------------|
| Flexible HMAC   | 3" Surface<br>(Type 2 or Type 3)                         | 8" Crushed Stone<br>Base |
| Full Depth HMAC | 2" Surface<br>(Type 2 or Type 3)<br>& 4" Binder (Type 2) | No Crushed Stone<br>Base |
| Concrete        | 6 <sup>°</sup>                                           | No Crushed Stone<br>Base |

GEOTECHNICAL INVESTIGATIONS

ETTL ENGINEERS & CONSULTANTS INC. TYLER - LONGVIEW - TEXARKANA

### **TABLE OF CONTENTS**

| TABLE OF CONTENTS & APPENDIX                  |
|-----------------------------------------------|
| LU INTROLITA HUN                              |
| 2.0 PROJECT DESCRIPTION                       |
| 3.0 SILE DESCRIPTION                          |
| 4.0 FOUNDATION SOIL STRATIGRAPHY & PROPERTIES |
| 4.1 Benavior of Expansive Soils               |
|                                               |
| 0.0 FOUNDATION DESIGN RECOMMENDATIONS         |
| 0.1 Shallow Spread Footings                   |
| 7.0 FLOOR SYSTEMS                             |
|                                               |
|                                               |
| 9.0 CONSTRUCTION CONSIDERATIONS               |
| 10.0 PAVEMENT RECOMMENDATIONS                 |
| 10.1 Pavement Subgrade Preparation            |
|                                               |
| 10.2.1 Flexible Pavement                      |
| 10.2.2 Full Depth Asphalt                     |
| 10.2.3 Kidid Pavement                         |
| 10.3 Medium-Duty Pavements                    |
| 10.3.1 Flexible Pavement                      |
| 10.3.2 Full Depth Asphalt                     |
| U.S.S Klold Pavement                          |
| 11.0 GENERAL CONSTRUCTION CONSIDERATIONS      |
| 71.1 Shallow Spread Footings                  |
| T 1.2 Site Design                             |
|                                               |
| 12.0 LIMITATIONS                              |
|                                               |

### APPENDIX

| 1.0 FIELD OPERATIONS                     | 10 |
|------------------------------------------|----|
| II.0 LABORATORY TESTING                  | 10 |
| Plate I: Plan of Borings                 |    |
| Log of Borings with Laboratory Test Data |    |
| Key to Soil Classification & Symbols     | 2  |

SECTECHNICAL INVESTIGATIONS

## 1.0 INTRODUCTION

This study was performed at the request and authorization to proceed granted by James Rice, Project Manager of NRS Consulting Engineers, Texarkana, Arkansas in accordance with our proposal dated May 5, 2005. Field operations were conducted on May 23, 2005.

The purpose of this investigation was to define and evaluate the general subsurface conditions at the interior Lots 1 & 2, west side of Magnolia Business Park that is located on the north side of Hwy 82, about 0.4 mile east of its intersection with Hwy 371 in Magnolia, Arkansas. Specifically, the study was planned to determine the following:

- Subsurface stratigraphy within the limits of exploratory borings;
- Classification, strength, expansive properties, and compressibility characteristics of the foundation soils;
- Suitable foundation types and allowable loading;
- Construction related problems that may be anticipated by the investigation; and
- Pavement recommendations for the construction of parking and driveways.

To determine this information a variety of tests were preformed on the soil samples. The scope of testing for this report comprised Standard Penetration, Atterberg liquid and plastic limits, Percentage of Fines Passing the No. 200 sieve, Natural Moisture Content and Unconsolidated Undrained Triaxial Compression. These tests were conducted to classify the soil strata according to a widely used engineering classification system; identify, and provide quantitative data for active (expansive) soils; define strength characteristics relating to allowable bearing values; predict immediate settlement; and assess construction workability of the soils.

The conclusions and recommendations that follow are based on limited information regarding site grading and proposed finished floor elevations provided to ETTL by others. Borings were drilled at locations staked by the client. (ETTL did not confirm by survey that the locations indicated on the attached Plan of Borings accurately reflect the location on the ground). This information should be verified prior to design. Should any portion of it prove incorrect, this firm should be notified in order to assess the need for revisions to this report.

#### 2.0 PROJECT DESCRIPTION

The project entails two Two new 12,000 sf, single-story preengineered metal buildings with steel framing and partial brick veneer. The north structure (Planning & Development building) will be used for offices and the south structure (Career Development building) for education. Up to 2' of cut in the northwest corner of each building to 2' of fill in the southeast will be required to construct the pads. Parking areas and drives will also be provided on the east and south sides of the complex.

#### **3.0 SITE DESCRIPTION**

The site is open and slopes down moderately from northwest to southeast within the building

ANALYTICAL & ENVIRONMENTAL SERVING CONSTRUCTION TESTING

GEOTECHNICAL INVESTIGATIONS

limits.

### 4.0 FOUNDATION SOIL STRATIGRAPHY & PROPERTIES

The soil profile is predominantly soft to very stiff sandy lean clay (CL). A **10'** thick zone of medium dense sandy silt (ML) was encountered in borings **B-1**, **B-2**, B-3 &8-6 at 8' to 13' deep. Atterberg Plasticity Indices of the tested soils range from 8 to 27.

#### 4.1 Behavior of Expansive Soils

**Moderately** expansive soils such as are found in the upper 5' in boring B-6 swell when they absorb moisture and shrink as they dry. Structures placed on these soils move up and down with such volume changes of the soil. When expansive soils are covered by an impermeable surface such as a building slab or pavement, seasonal moisture fluctuation at the interior of the covered **area** tends to be reduced or eliminated due to the lack of exposure to natural wetting and drying conditions (i.e., wind, rain, sun, vegetative, etc.). At the edges of the structure. however, the near surface soils are still subject to seasonal drying and wetting. Where continuously irrigated areas abut a building, the risk of severe shrinkage due to seasonal evaporative drying effects is low, but excess moisture could lead to some swelling (especially if native clays are dry at the start of construction). Where **areas** immediately adjacent to the structure are paved both the risk of swelling due **to** excess moisture and shrinkage due to moisture loss are **reduced** significantly.

The moderately expansive soils found in the upper 5' in boring B-6 are generally moderate in moisture content. Potential for swelling is considered to be low to moderate under conditions at the time of drilling. Potential for shrinkage is predicted to be low. As the moisture content of the soil changes from what it was in our samples, the potential for swelling and shrinkage will change accordingly.

One method for **quantifying** the potential for subgrade movement at any given location is to calculate the Potential Vertical RIse (PVR) (Tex 124 E Modified). This calculation takes into account the inter-relationship between depth, PI, and fluctuations in soil moisture. The maximum potential movement of the eXisting subgrade, PVR, due **to** normal climatological fluctuations in soil moisture content is predicted to be on the order of 1 inch at the **existing** grade and less than 1 Inch at the finished slab subgrade near boring B-6 (based on assumed dry conditions and an estimated annual seasonal moisture fluctuation zone of approximately 10 feet).

#### 5.0 GROUNDWATER OBSERVATIONS

Groundwater levels and seepage depths were monitored during and upon completion of drilling as well as at some point fol/owing completion. Seepage was observed at 13 feet deep. Groundwater depths were measured at 11 to 20 feet deep 30 minutes to 5.5 hours and after completion of drilling. The phreatic surface is predicted to vary from 11 feet to 13 feet deep, probably confined below the clay soil at 13 feet deep.

It should be noted, however, that seasonal groundwater conditions might vary throughout the year depending upon prevailing climatio conditions. This magnitude of variance will be largely dependent upon the duration and intensity of precipitation, surface drainage characteristics of the surrounding area, and significant changes In site topography.

GEOTECHNICAL INVESIIGATIONS

#### 6.0 FOUNDANON DESIGN RECOMMENDATIONS

A system of indfvldual and/or continuous shallow spread footings with a monolithic flat slab is recommended for support of the proposed superstructure loads for **both** structures. The risk of distress due to shrink/swell movement **of** the native soil is considered very low for the education building and somewhat higher (although still relatively low) for the office building (due to the native expansive **clay** seam in boring **B-6** which will remain beneath the structure). That is, shrink/swell movements of the clay that remains beneath the buildings, should they occur, are predicted to be small and, thus, resulting distress would be relatively minor. A system of shallow footings incorporated in a stiffened slab can be considered as an option to further reduce the risk of movement and recommendations for this system will be provided upon request. Recommendations and pertinent design parameters for a shallow foundation system are presented below. **With** ground supported floor systems it is **essential** that measures be taken to assure subgrade moisture **stability** (see section 11.2 Site Design) in order to enhance the **chances** of satisfactory structure perfolTTlance. Proper site design that prevents water **from** soaking Into **the** subgrade solis around the building is essential to reduce the potential for excessive movement caused by saturation of foundation soils.

#### 6.1 Shallow Spread Footings

Shallow footings should be designed to bear in undisturbed native subgrade or **properly** compacted select fill at a minimum depth of 2 feet below the finished Slab subgrade or adjacent exterior grade (whichever is deeper). Isolated footings should have a minimum width of 3 feet **and** strip footings shoUld be at least 12 inches wide. Footings should be proportioned for allowable gross bearing pressures of 2,000 pSf for Individual (isolated) footings and 1,500 psf **for** continuous (strip) shallow footings. These allowable pressures incorporate a safety factor relative to shear failure of the soil of at least 3 and may be increased up to 33% for intermittent loads such as wind. Predicted immediate settlement due to a loading of 2,000 psf for footing Widths less than 6 feet is less than 1 inch (total) and 0.5 Inch (d.ifferential). Detailed testing for the prediction of long-term consolidation settlement due to load is beyond the scope of this investigation, but the magnitUde of such settlement is not anticipated to be significant

#### 7.0 FLOOR SYSTEMS

The floor system for use with a **shallow** spread footing system consists of a flat slab that is either monolithic with, or isolated from, shallow footings.

#### 7.1 Flat Slab

This floor system consists of a cast-in-place concrete, unstiffened, flat slab on prepared subgrade (according to section 8.0 BUILDING SUBGRADE PREPARATION, below), which is placed monolithically with shallow footings, or can be isolated from them. ProviSion should be made to account for the fact **that** a heavily loaded foundation element, which is monolithic with an unloaded slab, may result in significant stress in the transition **zone** between the unloaded slab and the foundation element Reinforcing in the slab is used primarily to control shrinkage.

#### **8.0** BUILDING SUBGRADE PREPARATION

In order to validate the design assumptions given above regarding allowable foundation

GEOTECHNICAL INVESTIGATIONS

loads, and, in order to provide a serviceable floor system (within the limitations stated above), it is imperative that the subgrade of the bullding be properly prepared. The following procedures are recommended as a minimum:

- Remove surficial vegetation and topsoil. Cut to proposed subgrade as required. Proof roll exposed subgrade to detect loose of soft soils, which should be removed and replaced. Backfill any disturbed areas with property compacted select fill.
- Scarify the exposed subgrade to a depth of 8 Inches, adjust the moisture contentto, • and maintain it within a range of optimum to optimum +3 percent and recompact to a minimum density of 95% of the maximum density defined by ASTM 0698 (Standard Proctor).
- Place select fill to finished slab subgrade. Specifications for the placement of select ٠ fill are covered in section 11.3. Select Fill.

A durable moisture barrier should be provided belween the concrete building slab and the underlying soil subgrade. An Intact membrane installation with lapped and sealed joints and which is repaired If damaged during construction will help to Inhibit moisture migration from the subgrade through the slab.

### 9.0 CONSTRUCTION CONSIDERATIONS

Surficial soils in most areas may become unstable when wet necessitating stabilization or removal and replacement of wet soils to facilitate construction.

### **10.0 PAVEMENT RECOMMENDATIONS**

General recommendations for the design of *minimal* pavement structures are provided herein for your infonnation. A more detailed pavement analysis would require additional laboratory tests on bulk samples of the materials to be used in pavement construction and is beyond the scope of this Investigation.

These recommendations are based on surface soil characteristics inferred from the borings drilled for the building and at the areas to be paved. Both flexible and rigid pavement sections are presented. A summary of proposed designs is provided in Tables 10.1 and 10.2, below.

### 10.1 Pavement Subgrade Preparation

As a minimum, strip the native subgrade to remove topsoil and other deleterious materials. Cut to the proposed sUbgrade elevation as required. Exposed subgrade should be proof rolled prior to compaction in accordance with TxDOT Item 216 with the exception of roller size. The use of a 20 ton pneumatic roller or a fully loaded dump truck is recommended. Unstable areas will need to be cut out and replaced with select fill. Scarify the exposed subgrade to a depth of 6 inches. adjust the moisture content to within a range of optimum -1% to optimum +3%, and recompact to a minimum of 95% of the density as defined by ASTM D 698 (Standard Proctor). Fill material required to achieve final grade in paving areas should be selected and placed in accordance with section 11.3 Select Fill with the exception that only the soil in the top two feet of finished subgrade need meet the material

em ENGINEERS & CONSULTANTS INC. TYIER · LONG'/IEW - TEXARKANA

🖷 GEOTECHNICAI. INVESTIGATIONS 💻

requirements for select fill {it should still meet density requirements}, Positive surface drainage should be provided during construction (especially in low areas) to maintain pavement 5ubgrade in a dry and stable condition.

Islands and irrigated areas adjacent to pavement edges can be a source of pavement problems, especially where trave/lanes (as opposed to parking spaces) are adjacent. Over watering can lead to infiltration (and consequent destabilization) of flexible base material adjacent to the area. Where a flexible pavement option is chosen, landscaped areas subject to over watering (especially sprinklered islands) should be designed to contain all irrigation water (i.e. prevent leakage out the bottom into adjacent stone base material). An altemate, but less desirable solution is to place a strip of base material in the immediate vicinity of the potential **infiltration** comprised of HMAC base of the same thickness as the crushed stone base material in lieu of the crushed stone.

### 10.2 Light-Duty Pavements

#### 10.2.1 Flexible Pavement

The minimum pavement seetlon (and a section commonly used) for light-duty driveways and parking areas consists of 6 inches of crushed stone base **with** 2 inches of hot mix asphaltic concrete (HMAC). **Crushed** stone base Should consist of a stone that meets or exceeds the requirements of Section 303, Class 7, AHTD Standard Specifications for Highway Construction. Compaction of the stone base should be to a minimum **of** 95 percent of ASTM D 1557 (modified proctor) maximum denSity at optimum moisture  $\pm 3$  percent. Asphaltic concrete surfacing should comply with the requirements of Type 2 or Type 3, **Section** 407 of the noted AHTD Specifications and should be compacted to a density of 92 **to** 94 percent of maximum theoretical density.

#### 10.2.2 Full Depth Asphalt

The minimum full depth asphalt pavement section consists of 3 inches of hot mixed asphaltic concrete binder course **(Type** 2) with 2 inches of hot mixed asphaltic concrete surfacing (Type 2 or 3). Asphaltic concrete surfacing should comply with the requirements of **Type** 2 or Type 3, Section 407 of the noted AHTD Specifications and the asphaltic concrete binder should comply with the **requirements** of Type 2, Section 406. All HMAC should be compacted to a density of 92 to 94 percent of **maximum** theoretical density.

#### 10.2.3 Rigid Pavement

The performance of concrete pavement is dependent on many factors including weight and frequency of traffic, subgrade oonditions, concrete quality (Which itself is dependent on a host of factors), joint type and layout, jointing procedures, and numerous oonstruction practices. A detailed discussion of all of these items is beyond the scope of this report By way of general guidance, the following recommendations are **offered**:

- Minimum conorete compressive strength of 3,500 psi at 28 days placed with a maximum slump of 5 inches. The mix should contain 4% 6% entrained air for durability.
- Minimum pavement thickness of 5 inches. Concrete thickness may be increased to 6" in lieu of lime stabilized subgrade.
- Sawcut or preformed control joints at maximum spacing of 12 feet each way. Layout

ANAIYTICAL & ENVIRONMENTAL. SERVISES • CONSTRUCTION TESTING

GEOTECHNICAL INVEsnGA110NS

ofjoints should form basically square panels. Timing of **the cutting** ofjoints is **critical** to their performance and generally should be within 4 - 18 hours of concrete placement. Sealing ofjoints and **cracks** and maintenance of the seal are **critical** for satisfactory performance.

- Adequate site drainage to prevent ponding on or near the pavement
- Cure concrete via use of liquid membrane curing compound.
- Concrete quality should be controlled and jointing properly executed. Minimum reinforcement should consist of 6 x 6 No.6 welded wire fabric or No.3 at 18 inches each way and should not be continuous through control joints.
- All edges of pavement should be thickened to 9 inches (transitioning back to 5 inches over a minimum distance of 3 feet).
- Allow a minimum of 7 days curing time before permitting traffic on the pavement

The reader is referred to the American Concrete Institute Publication No. ACI 330R, *Guide for Design and Construction* of *Concrete Parking Lots* for more detailed information.

### 10.3 Medium-Duty Pavements

### 10.3.1 Flexible Pavement

For areas that will be subject to trash or delivery truck parking and traffic, the minimum recommended flexible pavement section **consists** of 8 inches of crushed stone base (Class 7, Section 303, AHTD Standard Specifications for,Highway Construction) and 3 inches of asphaltic concrete surfacing (Type 2 or Type 3, Section 407). Paving materials shOUld be specified as discussed previously.

### 10.3.2 Full Depth Asphalt

For a medium-duly full depth asphalt section, the minimum recommended section is 6 inches of HMAC paVing consisting of 2 inches wearing SUrfacing (Type 2 or Type 3, Section 407) over 4 inches of asphaltic binder (Type 2, **Section** 406). Paving materials should be specified as discussed previously.

### 10.3.3 Rigid Pavement

Recommendations for medium-duty concrete paving are the same as for light duty except that 6 inches of portland cement concrete should be considered the minimum pavement section and the edges should be thickened to 9 inches. Increase thicknesses by 1" where subgrade is not lime stabilized or 12" of select fill is not placed for finished sUbgrade.

GEOTECHNICAL INVESTIGATIONS

### Table 10,1 ... Pavement Options - Light Duty

| Туре                  | Surface/Sase Thicknes                                               | S                        |
|-----------------------|---------------------------------------------------------------------|--------------------------|
| Flexible H <b>MAC</b> | 2" Surface<br><b>Type 2</b> or Type 3)                              | 6" Crushed Stone<br>Base |
| Full Depth HMAC       | 2" SUrface<br>(Type 2 or Type 3)<br><b>&amp; 3" Binder (Type 2)</b> | No Crushed Stone<br>Base |
| Concrate              | 5"                                                                  | No Crushed Stone<br>Base |

### <u>Table 10.2 - Pavement Options - Medium Duty</u>

| Туре            | SurfacelBase Thicknes                                                  | S                        |
|-----------------|------------------------------------------------------------------------|--------------------------|
| Flexible HMAC   | 3" Surface<br>, _ <u>, pe 2 or Type 3)</u>                             | 8" Crushed Stone<br>Base |
| Full Depth HMAC | 2" Surface<br>(Type 2 or <b>Type</b> 3)<br>& 4" Binder <b>(Type</b> 2) | No Crushed Stone<br>Base |
| Concrete        | 6"                                                                     | No Crushed Stone<br>Base |

### **11.0 GENERAL CONSTRUCTION CONSIDERATIONS**

#### 11.1 Shallow Footings

All footing excavations should be inspected by qualified personnel to insure that subgrade is composed of firm, undisturbed native soil or properly compacted selectfill as recommended in this report. Water and/or loose material in footing excavations should be removed prior to final shaping of the footing excavation and placement of concrete.

#### 11.2 Site Design

The followin9 recommendations are derived from years of experience with structures founded on **expansive** soils and are considered **essential** to satisfactory structure performance. especially where the slab is to be **placed** on grade:

• Sidewalks should be sloped away from buildings and should not be tied to the structures. The joint between the sidewalk and the foundation should be sealed. Sidewalks should not impound water adjacent to the structure. Potential heave of newe ground adjacent to the structure needs to be taken into consideration when constructing the walk so as to avoid a sidewalk which Impounds water adjacent to the structure.

ANALYTICALS ENVIRONMEN' ALSERVIES 7. CONSTRUCTION TESTING

GEOTECHNICAL INVESIIGATIONS

- The ground **surface** around the building as well **as** paved areas should be sloped away from the building on all sides so that water will drain away from the structure. A minimum slope of 5% is recommended for the area 10 feet wide Immediately adjacent to the structure. Drainage swales should have a minimum longitudinal slope of 2%. Roof drainage should be conveyed by an appropriate means for a distance of at least 15 feet from the building before it is allowed to drain into the subgrade. Water should not be allowed to pond near the bUilding after the floor system has been placed.
- Trees should not be closer than their mature height to the structure and shrubbery should not be planted adjacent to the building unless they can be contained in watertight planter boxes and **irrigation** waler can be prevented from seeping Into the subgrade around the building. A **horizontal** moisture barrier (e.g. Mirafi 1212 reinforced polyethylene permanently sealed to the foundation edge at the ground line and sloped away from the bUilding) and placed beneath planting beds is an alternative to planter boxes provided it is maintained In a watertight condition (Le. joints sealed and punctures repaired). Planting bed edging should not impound water. A root banier around the entire structure perimeter will provide some added assurance against desiccation of the soil due to roots growing beneath the structure. Periodic root pruning may be required to limit drying of soils beneath foundations due to vegetation. Over irrigation adjacent to the structure can cause an increase in subsurface moisture contents that could lead to heaving.
- To help limit surface water infiltration beneath the structure, backfill in the area 10 feet wide adjacent to the structure should be native lean or fat claysoil compacted to a minimum density of 95% of ASTM D 698 (Standard Proctor) at a moisture content of optimum or above. This zone should be at least 2 feet thick. This backfill is not necessary where pavement abuts the structure and the joint is sealed.
- **Backfill** for utility line ditches should be carefully controlled and should consist of a relatively impenneable material (clayey sand or lean clay), especially in the area beneath and immediately outside of the structure. Old utility lines should be removed from beneath the structure. Fill in new or old utility trenches shOUld be placed to the same specifications as select fill. The top 6 inches under paving should be compacted to a density equal to that specified for the pavement subgrade.
- Utility connections to the building should be flexible to allow for anticipated soil movements that will be different than the anticipated movement of the structure to which they are connected (e.g. where a suspended slab is used).

### 11.3 Select Fill

Select fill shall consist of homogeneous soils (i.e. not sand with clay lumps) free of organic matter and rocks larger than 6 inches in diameter and possessing an Atterberg PI of 8 to 18. with a liqUid limit of 40 or less. Atterberg limits testing of the fill at a rate of 1 test per every 250 cubic yards of fill placed is recommended to verify that fill specifications are met. The material should be placed in the following manner.

Prepare the subgrade in accordance with the recommendations discussed in a previous section of this report entitled BUILDING SUBGRADE PREPARATION

ANÁLYTICAL& ENVIRONMENTAL SERVICES CONSTRUCTION TESTING

GEOTECHNICAL INVESTIGATIONS

section 8.0. Sites that slope more than about 15% should be benched With 5-foot wide benches prior to placing fill.

- Place subsequent lifts of select fill in thin, loose layers not exceeding nine inches In thickness to the desired rough grade and compact to a minimum of 95% of the maximum density defined by ASTM 0 698. Maintain moisture within a range of optimum to optimum +3%.
- Conduct in-place field density tests at a rate of one test per 3,000 square feet for every lift with a minimum of 2 tests per lift. **Density** testing is essential to assure that the soil, which supports the structure, is properly placed.
- Prevent excessive loss of moisture during construction.
- For select fill **placed** above the existing groundline, extend the lateral limits of the fill at least 5 feet beyond the perimeter of the building area, transitioning back to the **existing** groundline on a 3:1 (horizontal/verticaJ) slope.

#### **12.0 LIMITATIONS**

Geotechnical design work is characterized by the presence of a calculated risk that soil and groundwater conditions may not have been fully revealed by the exploratory borings. This risk derives from the practical necessity of basing interpretations **and** design condusions on a limited sampling of the subsoil stratigraphy at the project site. The number of borings and spacing is chosen in such a manner as to decrease the possibility of undiscovered-anomalies, while considering the nature of loading, size and cost of the project. The recommendations given in this report are based upon the conditions that existed at the boring locations at the time they were drilled. The **term** "existing groundline" or "existing subgrade<sup>n</sup> refers to the ground elevations and soil conditions at the time of our field operations.

It is conceivable that soli conditions throughout the site may vary from those observed in the exploratory borings. If such discontinuities do exist, they may not become evident until construction begins or possibly much later. Consequently, careful observations by **the** geotechnical engineer must be made of the **construction** as It progresses to help detect significant and obvious deviations of actual conditions throughout the project area from those inferred from the exploratory borings: Should any conditions at variance with those noted in **this** report be encountered during construction, this office should be notified immediately so that further investigations and supplemental recommendations can be made.

This company is not responsible furthe conclusions, opinions, or recommendations made by others based on the contents **of this** report. The purpose of this study is only as stated elsewhere herein and is not intended to comply with the requirements of 30 TAC 330 Subchapter T regarding testing to determine the presence of a landfill. Our professional services have been performed, ourfindings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. No warranties are either expressed or implied.

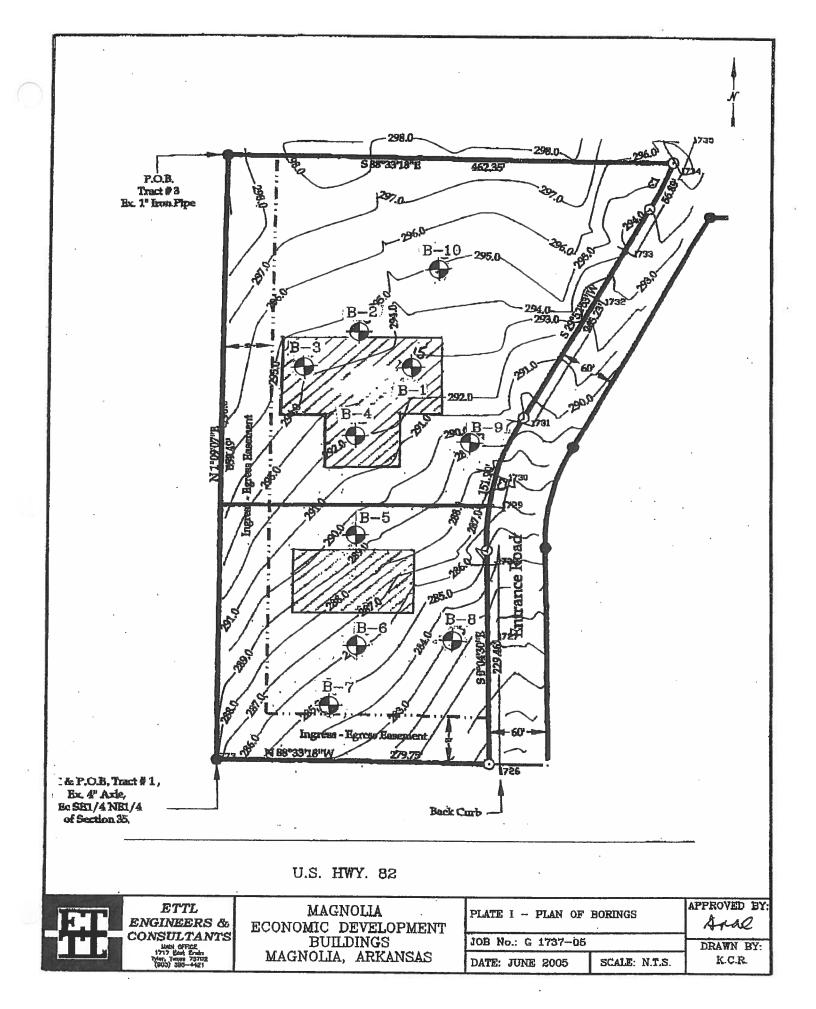
#### APPENDIX

#### 1.0 FIELD OPERATIONS

Subsurface conditions at the site were defined by 10 sample core borings drilled to depths of 5 feet and 25 feet **ETTL personnel** drilled the borings at locations staked by the client. The field boring logs were prepared as drilling and sampling progressed and final boring logs are included in the Appendix. Descriptive tenns and symbols used on the logs are in accordance with the Unified Soli Classification System (ASTM D 2487). A reference key is provided on the final page of this report

A truck-mounted rotary drill rig utilizing dry auger drilling procedures was used to advance the borings. Soils were sampled by means of sampled by means of a 1 *3IB-inch* I.D. by **24**inch long split-spoon sampler driven into the bottom of the borehole in accordance with ASTM D 1586 procedures. In **conjunction** with this sampling technique, the Standard Penetration **Test** was conducted by recording the N-value, which is the number of blows required by a 140-pound weight falling 30 inches to drive a split-spoon sampler 1 foot into the ground. Forvery dense strata, the number of blows is limited to a maximum of 50 blows within a **6-inch** increment Where possible, the sampler is "seated" 6 inches before **the** Nvalue is detennined. The N-vatue obtained from the Standard Penetration Test provides an approximate measure of the relative density that correlates **with the** shear **strength** of soil. The disturbed samples **were** removed from the sampler, logged, packaged, and transported to the laboratory for further identification and classification.

Soils were also sampled by means of a 3-inch *O.D.* by 24-inch long thick-walled Shelby Tube sampler. Using the drilling rig's hydraulic pressure, the sampler was pushed smoothly into the bottom of the borehole. The consistency of these samples was measured in the field by a calibrated pocket penetrometer. These values, recorded in tons **per** square foot, are shown on the boring logs. Such samples were **extruded** in the field, logged, sealed to maintain *in situ* conditions. and paCkaged for transport to **the** laboratory.


Samples obtained **during** our field studies and not consumed by laboratory testing procedures will be retained in our Tyler office free of charge for a period of 60 days. To arrange storage beyond this point in time, please contact the Tyler office.

#### 11.0 LABORATORY TESTING

Upon retum to the **laboratory**, a geotechnical engineer visually examined all samples and several specimens were selected for representative identification of the substrata. By detennining the Atterberg liquid and plastic limits (ASTM 0 43'18) and percentage of fines passing the No. 200 sieve (ASTM 0 1140), field classification of the various strata was verified. Also conducted were natural moisture contenttests (ASTM D 2216). The results of these tests are presented on each respective log in this Appendix.

Strength characteristics of the cohesive substrata were evaluated by conducting unconsolidated, undrained triaxial compression **tests** (ASTM D 2850) on selected undisturbed field samples obtained **with** the Shelby tube sampler. In this type of compression test, confining pressures were chosen that approximate in situ **pressures** at the sample depth below existing ground. The specimens were axially loaded until failure occurred. The shear strength (or cohesion) is equal to **one-half** the peak compressive

stress. Moisture content (ASTM 02216) and dry density (ASTM 0 2437) are detennined as part of this test. The results of these **tests** are also presented in the indMduallog of boring provided in this Appendix.



| ETTL<br>ENCIRCI March Construction<br>ETTL<br>ENCIRCI March Mar                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT: Magnolia Economic Deve<br>Magnolia Arkansas<br>PROJECT NO.: G 1737-05<br>PROJECT NO.: G 1737-05<br>Press<br>N=7<br>N=12<br>N=12<br>N=12<br>N=15<br>N=15<br>N=16<br>N=16<br>N=16<br>N=16<br>N=16<br>N=16<br>N=16<br>N=16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ETTL<br>ENCINEERS &<br>CONSULTANTS<br>MAIN OFFICE<br>1717 East Emmin<br>Tyter, Texes 75702<br>(903) 665-4421<br>(903) 667-471<br>(903) 671-471<br>(903) 671-471<br>(904) 671-471<br>( |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                                | ETTL                                                 |                                                                                                                         | LOG OF BORING B-2                                               |          | SING   |                   | ś.                                                  | DATE                                   | LLI                    |              | ິ               | 5/23/05                                   |
|------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|--------|-------------------|-----------------------------------------------------|----------------------------------------|------------------------|--------------|-----------------|-------------------------------------------|
|                                                | ENGINEERS &                                          | PROJECT:                                                                                                                | Magnolia Economic Development<br>Magnolia, Arkansas             | evelopme | ənt    |                   |                                                     | SUR                                    | SURFACE ELEVATION ~29  | ELEY         | ATIC            | <b>ION</b><br>-293.5'                     |
|                                                | CONSULIANIS                                          | PROJECT                                                                                                                 | PROJECT NO.: G 1737-05                                          | BORI     | NG TY  | ដ្ឋ               | BORING TYPE: DJy Auger                              | (%                                     | ATTERBERG<br>LIMITS(%) | BERG<br>S(%) |                 |                                           |
|                                                | MAIN OFFICE<br>1717 East Envir<br>Tyter, Texas 75702 | H                                                                                                                       | ● BLOW COUNT ●<br>20 40 60 80<br>▲ Qu(ter) ▲<br>1.0 2.0 3.0 4.0 |          |        |                   | Natural Moisture Context<br>and<br>Atterberg Limits |                                        |                        |              | SIEVE (%)       | c                                         |
|                                                | (803) 585-4421<br>(803) 585-4421                     | пело<br>Триат<br>Ата                                                                                                    | PPR (taf)<br>2.0 3.0<br>Torvana (taf)                           | NPRESS   | RENGTH | ESSURE<br>NEINING | Plastic Motsture Liquid<br>Limit Content Limit<br>P | T                                      |                        | DITBAJ9      | 00 <b>Z#</b> SN | 'SƏT AƏH<br>IƏMAO'U<br>IƏMAO'U<br>IƏMAO'U |
| a ic                                           | MATERIAL DESCRIPTION                                 | D<br>S<br>H                                                                                                             | 1.0 2.0 3.0 4.0                                                 |          | T2     | 00                | 20 40 60 80                                         | OW                                     | +-                     |              | NIM             | 임크리                                       |
| 5<br> >->                                      | SANDY LEAN CLAY(CL) medium slift, brown              | , N<br>4=N                                                                                                              |                                                                 |          |        |                   |                                                     | 8                                      | 35 16                  | 19           | 99              | +40 Sleve =2%                             |
|                                                |                                                      | 8<br>2                                                                                                                  |                                                                 |          |        |                   |                                                     | <b>6</b>                               | 32 16                  | 9 16         | 60              | +40 Sleve =2%                             |
|                                                |                                                      | P=3.0<br>T=1.0                                                                                                          |                                                                 | 107      | 1.30 4 | <b>1</b> 0        |                                                     | <b>e</b>                               |                        |              |                 |                                           |
|                                                | -very stiff, gray and red                            | P=2.7<br>T=0.8                                                                                                          |                                                                 |          | ·····  |                   |                                                     | 24                                     | 46                     | 54           | 20              | +40 Slev <del>e</del> =2%                 |
|                                                |                                                      |                                                                                                                         |                                                                 |          |        |                   |                                                     | · · · · · · ·                          |                        |              |                 |                                           |
|                                                | <u>wayur yiri</u> mi) meauun dense, tan ano gray     |                                                                                                                         |                                                                 |          |        |                   |                                                     | ······································ |                        |              |                 |                                           |
| 3<br>2<br>2<br>2<br>2                          | -gray and tan                                        | N=20                                                                                                                    |                                                                 |          |        |                   |                                                     | · · · · · · · · · · · · · · · · · · ·  |                        |              |                 |                                           |
| 5<br> >_<                                      | LEAN CLAY(CL) very stiff; brown                      | N=26<br>P=2.7                                                                                                           |                                                                 |          |        |                   |                                                     |                                        |                        |              |                 |                                           |
| 25                                             | Boltom of Baring @ 25'                               | •                                                                                                                       |                                                                 |          |        |                   |                                                     |                                        | ·                      |              |                 |                                           |
| H H H<br>Water Coxervatione:<br>@ 20° and open |                                                      | Kay to Abbrevetons:<br>Kay to Abbrevetons:<br>N - SPT Deta (Bicwafft)<br>P - Pocket Penetometer (tsf)<br>T - Tronom Jen | cwaift)<br>Iromakar (laf)                                       | Coord    | nates: | N 33              | blee:<br>Coordinates: N 33 18'07.6", W 93 14'40.3"  |                                        | -                      | _            |                 |                                           |
| aved to 21' afi                                | caved to 21' after 3 hours and 45 minutes.           | I I ale Manual Photos                                                                                                   | etter (r.f.                                                     |          |        |                   |                                                     |                                        |                        |              |                 |                                           |

ETTL ENGINEERS

| _                 | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                |                                          |               |            |                |                         |                                       |        | 42 02                                                                                                                                                                |
|-------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|------------------------------------------|---------------|------------|----------------|-------------------------|---------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Gradue</i>     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MED                                                                             | Т ЯЗНТС<br>ІЯОЗЯЗ'<br>І8Я ефь5 | a a                                      | +40 Steve =2% |            |                | •                       |                                       |        |                                                                                                                                                                      |
| ŭ                 | SURFACE ELEVATION                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (%) 3/3/5 (%)                                                                   | # SANIV                        |                                          | 6D            |            |                |                         |                                       |        |                                                                                                                                                                      |
|                   | LEV                                                     | ere<br>She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 | SAJ9 I                         | т <mark>6</mark>                         | 14            |            |                |                         |                                       |        |                                                                                                                                                                      |
|                   | E<br>E                                                  | ATTERBERG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIMLI OIT                                                                       | 2019 E                         | ц <del>1</del>                           | 9             |            |                |                         |                                       |        |                                                                                                                                                                      |
| DATE              | RFA                                                     | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                |                                          | 30            |            |                |                         |                                       |        |                                                                                                                                                                      |
| à                 | S                                                       | (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | «) тиатио ая                                                                    |                                | <u>ې</u>                                 | 4             |            |                | •                       |                                       |        |                                                                                                                                                                      |
|                   |                                                         | BORING TYPE: Dry Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Netural Molsture Content<br>and<br>Atterberg Limits<br>Plastic Atolstare Liquid | Conterot                       | ,,<br>≩                                  |               |            |                |                         |                                       |        | coordinates: N 33 18'07.0", W 93 14'40.9"                                                                                                                            |
| 2                 |                                                         | Dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116E (J)                                                                        | CONFIN                         | +                                        |               |            |                |                         |                                       | ****** | 33 18                                                                                                                                                                |
| 5                 |                                                         | YPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (%) NIASTE E                                                                    |                                |                                          |               |            |                |                         | 2                                     |        | Z                                                                                                                                                                    |
|                   | lent                                                    | LON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EZZINE                                                                          |                                |                                          |               |            |                |                         |                                       | h      | inate                                                                                                                                                                |
| 2<br>2            | nqole                                                   | BOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (pd) ALISN                                                                      |                                |                                          |               |            |                |                         |                                       |        | Rotan:<br>Coord                                                                                                                                                      |
| LUG UF BURING B-3 | CT: Magnolia Economic Development<br>Magnolia, Arkansas | Ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLOW COUNT BLOW COUNT 20 40 60 60 60 1.0 2.0 3.0 4.0 FPR (15)                   | ° ♦ ?                          |                                          |               |            |                |                         | · · · · · · · · · · · · · · · · · · · |        | ta Abbreveldons:<br>N - SPT Della (Stove1P)<br>P - Poddet Pentivemésir (Jaf)<br>T - Trovens Neb                                                                      |
|                   | PROJECT:                                                | PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | gjji<br>(39722)<br>Ataq        | P =6<br>=1.5                             | N=8<br>P=2.5  | N=11       | P=2.5<br>T=0.7 |                         |                                       |        | Key la Abûrevellonic.<br>N - SPT Øels (6X<br>P - Podat Perist<br>T - Travana Ket)                                                                                    |
| ETT               | ENGINEERS &                                             | CONSULTANTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAIN OFFICE<br>1717 East Envin<br>Tyler, Texas 75702<br>(902) 691-4423          | MATERIAL DESCRIPTION           | SANDY LEAN CLAY(CL) sliff; brown and red | very sűř      | váih roats |                | SANDY SILT(ML) tan; wet | Bollom of Baring @ 15'                |        | fater Lavel Est: 文 Assesured: 文 Pershed: 文<br>Vater Cuservalbons: Seepage @ 13' while drilling. Water lavel<br>@ 13' and open upon completion. Water lavei @ 12' and |
|                   |                                                         | Sec. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RLEVEL                                                                          | TAW                            |                                          |               |            |                |                         | 1                                     |        | en upo                                                                                                                                                               |
|                   |                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | usc                                                                             |                                | <u>ಟಿಟಿಟಿಟಿ</u><br>ಕ                     |               |            |                |                         | -                                     |        |                                                                                                                                                                      |
| F                 | 5 -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | gwa2 `                         |                                          |               |            |                | لي<br>الا               |                                       |        | Visiter Level<br>Visiter Level<br>Visiter Coservalione:<br>@ 13' and o                                                                                               |
|                   |                                                         | of Street, Str |                                                                                 |                                |                                          |               |            | • • • ľ        |                         | •                                     |        | 207                                                                                                                                                                  |

|                                                                             |                                                                                                                                                                                                                   |                                                                                   | L0G 0                                                                                             | OF BORING B-4                               | B-4                                                | DATE           |                        |             | . ŭ         | 5 M 3 M 5                 |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|----------------|------------------------|-------------|-------------|---------------------------|
|                                                                             | ENGINEERS &                                                                                                                                                                                                       | PROJEC                                                                            | XI: Magnolia Economic Development<br>Magnolia, Arkansas                                           | evelopment                                  |                                                    | SUR            | SURFACE ELEVATION      | ELEV        |             | -292'                     |
| ]                                                                           | CONSULTANIS                                                                                                                                                                                                       | PROJECT                                                                           | NO.:                                                                                              | BORING TYPE: Dry Auger                      | Dry Auger                                          | (%             | ATTERBERG<br>LIMITS(%) | 3ERG<br>X%) | •           |                           |
|                                                                             | MAIN OFFICE<br>1717 East Emin                                                                                                                                                                                     |                                                                                   | ● BILOW COUNT ●<br>20 40 50 80                                                                    | (                                           | Natural Motsture Content<br>and                    | TENT (         | ш                      | XSON        | (%) JA      |                           |
|                                                                             | <b>–</b>                                                                                                                                                                                                          | HIONE                                                                             | ▲ Glu (181) ▲<br>1.0 2.0 3.0 4.0<br>■ PPR(151) ■<br>1.0 2.0 3.0 4.0                               | I<br>NGTH (tar)<br>NGTH (tar)<br>NGTH (tar) |                                                    | TURE CON       | TIMLI OIUI             | I YNDITEA   | )318 002# ! | stests<br>Camac<br>(# 187 |
|                                                                             | MATERIAL DESCRIPTION                                                                                                                                                                                              | JƏIA<br>ATZ<br>TAQ                                                                | Torvarie (tsf)<br>2.0 3.0                                                                         | COMF<br>COMF                                |                                                    | LSIOW          |                        |             | รกพเพ       | раява                     |
| <u>त्रा</u>                                                                 | SANDY LEAN CLAY(CL) soft; red and gray                                                                                                                                                                            | N=2                                                                               | ····                                                                                              |                                             |                                                    | <del>8</del> 9 | +                      |             | 61          |                           |
|                                                                             | meditum sliff                                                                                                                                                                                                     | N=7                                                                               |                                                                                                   |                                             |                                                    |                |                        |             |             |                           |
|                                                                             | gray and red                                                                                                                                                                                                      | N=4                                                                               |                                                                                                   |                                             |                                                    | 19             | 38 17                  | 5           | 68          | +40 Sleve =2%             |
|                                                                             | very sliff                                                                                                                                                                                                        | P≖3.0<br>T=0.8                                                                    |                                                                                                   |                                             |                                                    | 13             | 34 17                  | 17          | 58          | +40 Sleve =1%             |
| ₩                                                                           | n⊟.∽                                                                                                                                                                                                              | P=3.2                                                                             |                                                                                                   | 1 : : : :                                   |                                                    |                |                        |             |             |                           |
|                                                                             | gray; with sand seams                                                                                                                                                                                             | P=4.0                                                                             |                                                                                                   |                                             |                                                    |                |                        |             |             |                           |
|                                                                             |                                                                                                                                                                                                                   | P=4.0                                                                             |                                                                                                   |                                             |                                                    |                | ****                   |             |             |                           |
| 8                                                                           | Bottom of Borting @ 25'                                                                                                                                                                                           |                                                                                   | ···<br>··<br>··<br>··<br>··                                                                       |                                             | · · · · · · · · · · · · · · · · · · ·              |                | ····                   |             |             |                           |
| Valer Level<br>Waler Cobservations:<br>@ 21' and open<br>cseved to 22' afte | teist tweet Est.: 又 Messured: 工 Ferched: 工<br>Naise Observations: Seepege @ 13' while drilling. Water level<br>@ 21' and open upon completion. Water level @ 11' and<br>caved to 22' after 1 hour and 20 minutes. | Key to Althreveltons:<br>N - SPY Dale (B)<br>P - Packel Penel<br>T - Torrens (LF) | to Athreveltone:<br>N - SPY baia (Bitwestr)<br>P - Packet Penetrometer (1st)<br>T - Torvere (tst) | Notes:<br>Coordinates: N                    | bles:<br>Coordinates: N 33 18'06.2", W 93 14'40.3" |                | 4                      | ]           | 1           |                           |

C

|            |               | 1                                                       |                          |                          |                         |                                                |                                    | .0                                     | ą,            |                |               |                                  |               |          |                   |                        |                                                                                                                                                                              |
|------------|---------------|---------------------------------------------------------|--------------------------|--------------------------|-------------------------|------------------------------------------------|------------------------------------|----------------------------------------|---------------|----------------|---------------|----------------------------------|---------------|----------|-------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 5/23/05       | <b>ON</b><br>~289.5'                                    |                          |                          | d                       | rtes<br>Orme<br>Rai. #)                        | 키워걸먹                               | +40 Sieve =1%                          | +40 Sieve =2% |                | +40 Sieve =1% |                                  |               |          |                   |                        |                                                                                                                                                                              |
|            | 5/2           | SURFACE ELEVATION<br>~28                                |                          | (%) ፤                    | Nais                    | 00 <b>7</b> # S                                | NIM                                | 89                                     |               |                | 74 +          |                                  |               |          |                   |                        | -                                                                                                                                                                            |
|            |               | EVA                                                     | ы<br>В<br>К<br>С         | Xaq                      | NI YT                   | Aanc                                           | ы <u>т</u>                         | 17                                     | 15            |                | 18            |                                  |               |          |                   |                        |                                                                                                                                                                              |
|            |               | 田田                                                      | ATTERBERG<br>LIMITS(%)   |                          | רואוב                   | oltaA                                          | 면 먹                                | 1                                      | 17            |                | 25            |                                  |               | <u> </u> |                   |                        | 1                                                                                                                                                                            |
|            | Щ             | čFAC                                                    | LY SI                    |                          | TIMI                    | סחום ר                                         | n =                                | 34                                     | 32            |                | 57            |                                  |               |          |                   |                        | 1                                                                                                                                                                            |
|            | DATE          | SUF                                                     | (%                       | ) TNB                    | тиоэ                    | аяит                                           | siom                               | 17                                     | 18            | 53             | 28            |                                  |               |          |                   |                        | 1                                                                                                                                                                            |
|            |               |                                                         | BORING TYPE: Dry Auger   | Natural Moisture Content | ard<br>Atterberg Limits | Plastic Molsture Liquid<br>Limit Contert Limit | 20 40 60 80                        |                                        |               |                | -             |                                  |               |          |                   |                        | elles:<br>Coordinates: N 33 18'05.2", W 93 14'40.3"                                                                                                                          |
|            | В-9           |                                                         | : Dry                    |                          | (L)                     | SNINI<br>SKUSS                                 | PRE                                | <u> </u>                               |               | ср.<br>ср.     | •             |                                  | <u> </u>      | -in-in-i |                   | [                      | 33.1                                                                                                                                                                         |
|            | ß             |                                                         | LYPE                     | (%)                      |                         | IS BAU                                         |                                    |                                        |               | 10             |               |                                  |               |          | • .               |                        | - Z<br>:8                                                                                                                                                                    |
|            | RIN           | nent                                                    | ING                      |                          |                         | HLIONE<br>SSENE                                |                                    |                                        |               | 2.00           |               |                                  |               |          |                   |                        | dinate                                                                                                                                                                       |
|            | BO            | elapr                                                   | BOR                      | (Ľ                       |                         | DENSI                                          |                                    |                                        |               | 101            |               | ·                                |               |          |                   |                        | Coor                                                                                                                                                                         |
| C          | LOG OF BORING | XT: Magnolia Economic Development<br>Magnolia, Arkansas | <b>XT NO.:</b> G 1737-05 | BLOW COUNT               | ▲ Cut(tal) ▲            | PPR (151)                                      | ← Torvane (tef)  ◆ 1,0 2.0 3.0 4.0 |                                        |               |                |               |                                  |               |          |                   |                        | onsifit)<br>rometer (19)<br>ser (151)                                                                                                                                        |
|            |               | PROJECT                                                 | PROJECT                  |                          | н                       | LONE                                           | igiri<br>Fite<br>Faq               | 01=N                                   | P≕2.0         | P=2.8<br>T≈0.9 | P=2,7         | P=1.7                            | р<br>1<br>С   |          | P=2.5             |                        | Key in Athrevelicrs:<br>N - SPT Dets (B3<br>P - Pocket Penet<br>T - Towane (151)<br>L - Lab Vane She                                                                         |
|            | LLLL          | ENGINEERS &                                             | CONSULTANTS              | MAIN OFFICE              | 1717 East Ewin          | 1 (903) 595-4421                               | MATERIAL DESCRIPTION               | SANDY LEAN CLAY(CL) stiff; red and tan |               | -very stiff    | red           | ۰<br>silf: gray; with sand seams | -orav and tan |          | –very stiff, gray | Bottom of Boring @ 25' | Vater Lavel Est: 又 Nessured: 本 Perched: 又 Vater Level (13, While drift)ing. Water level @ 22' and open upon completion. Water level @ 19' and caved to 22' after 30 minutes. |
| $\bigcirc$ |               |                                                         |                          |                          |                         |                                                | AW.                                |                                        |               |                |               |                                  |               |          |                   |                        | "affe                                                                                                                                                                        |
|            | E             |                                                         |                          |                          |                         | 2en                                            |                                    | ರ                                      |               |                |               |                                  |               |          |                   |                        | and (<br>to 22                                                                                                                                                               |
|            |               |                                                         |                          |                          |                         | NPLES<br>NPLES                                 |                                    |                                        |               | ່<br>ເກ        |               | 9                                |               | R        |                   | ц.<br>1.               | Veter Level<br>Weter Deervellons:<br>@ 22' and o<br>CBVed to 22'                                                                                                             |
|            |               |                                                         |                          |                          |                         |                                                |                                    |                                        |               |                | LLL           | چه چ<br><u>ایسان ایسان ایسان</u> | -<br>         | ۶۹<br>ا  |                   | 式<br>                  |                                                                                                                                                                              |

|            |               | 12                                                      |                        |                                                | त्रभारत<br>रबी. #)                                                   |                        | ve =2%                                   | Steve<br>1%       | V8 =2%         | ve =2%                                       |          |                                                                 | ······                                        |                        |                                                                                                                                                                                                                  |
|------------|---------------|---------------------------------------------------------|------------------------|------------------------------------------------|----------------------------------------------------------------------|------------------------|------------------------------------------|-------------------|----------------|----------------------------------------------|----------|-----------------------------------------------------------------|-----------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\cap$     | 5/24/05       | <b>tON</b><br>~286'                                     |                        |                                                | R TESTS<br>DRMED                                                     |                        | +40 Sieve =2%                            | +40 Steve<br>=10% | +40 Sleve =2%  | +40 Sieve =2%                                |          |                                                                 |                                               |                        |                                                                                                                                                                                                                  |
|            | ເມື           | SURFACE ELEVATION<br>~28                                |                        | (%) =^=                                        | 19 007# 9                                                            | พเพกะ                  | 8                                        | 66                | 74             | 32                                           |          |                                                                 |                                               |                        |                                                                                                                                                                                                                  |
|            |               | TEV                                                     | S E                    |                                                | TIOITSA                                                              | าง ธ                   | 11                                       | 27                | 17             | <b>e</b> Q                                   |          |                                                                 |                                               |                        |                                                                                                                                                                                                                  |
|            |               | E<br>E<br>C<br>E                                        | ATTERBERG<br>LIMITS(%) | MIT                                            | I OITEA                                                              | 며토                     | <u> </u>                                 | 47                | 23             | 27                                           |          |                                                                 |                                               |                        |                                                                                                                                                                                                                  |
|            | DATE          | IRFA                                                    |                        | L                                              | אוח מוחמ                                                             | . 1                    |                                          | 44                | 0¥             | 35                                           |          |                                                                 |                                               |                        | 2                                                                                                                                                                                                                |
|            | à             | ທີ                                                      | (%                     | J<br>) TNATN(                                  |                                                                      | SIOM                   |                                          | <b>\$</b>         | 138            | 58                                           | Y        |                                                                 | ·····                                         |                        |                                                                                                                                                                                                                  |
|            | 6             |                                                         | BORING TYPE: Dry Auger | uten                                           | Attencerg Limits .<br>Plastic Motsture Liquid<br>Limit Content Limit | 20 40 80 80            |                                          |                   |                |                                              |          |                                                                 |                                               |                        | <sup>btes:</sup><br>Coordinates: N 33 18'04.8", W 93 14'40.1"                                                                                                                                                    |
|            | B             |                                                         |                        |                                                | INING                                                                | CON                    |                                          |                   | <u></u>        |                                              |          |                                                                 |                                               |                        | 7 33                                                                                                                                                                                                             |
|            | ŰŽ            |                                                         | LΥΡ                    |                                                | ศาย อยเ                                                              |                        |                                          |                   |                |                                              |          |                                                                 | ·····                                         |                        | les: 1                                                                                                                                                                                                           |
|            | <b>KII</b>    | nent                                                    | ING                    |                                                | NSSERS                                                               |                        |                                          |                   |                |                                              |          |                                                                 |                                               |                        | dina                                                                                                                                                                                                             |
|            | OF BORING B-6 | elopi                                                   | BO                     | (bct)                                          | LUSNED                                                               | DBA                    |                                          |                   |                |                                              |          |                                                                 | <u>, , , , , , , , , , , , , , , , , , , </u> |                        | Cool                                                                                                                                                                                                             |
|            | 90T           | CT: Magnolia Economic Development<br>Magnolia, Arkansas | NO.:                   | ● BŁCWY COUNT ●<br>20 40 60 80<br>▲ Qu (tsf) ▲ | ••••••••••••••••••••••••••••••••••••••                               | <br>                   |                                          |                   |                |                                              |          |                                                                 |                                               |                        | to Abbrewationic<br>N - SPT Data (BiowarFt)<br>Р - Росбое (Раста<br>Т - Тогисале (taf)<br>L - Leb Vane Sixeer (taf)                                                                                              |
|            |               | PROJECT                                                 | PROJECT                |                                                | HTONE                                                                | . В. Н.<br>ЯТ2<br>ТАСІ | N=5<br>P=1.5                             | N=7<br>P=2.0      | P≕2.5<br>T=0.5 |                                              | N=21     | P=4.0                                                           | N≃18<br>P=4.5                                 |                        | - <u>1</u><br>Kay (b Abbrevatoria:<br>N - SPT Deta (Bi<br>P - Potdoel Penel<br>T - Torvens (1st)<br>L - Leb Vane Sh                                                                                              |
|            | ETTL          | ENGINEERS &                                             | CONSULIANIS            | MAIN OFFICE<br>1717 East Erwin                 | Tyler, Texas 75702<br>(903) 695-4421                                 | MATERIAL DESCRIPTION   | SANDY LEAN CLAY(CL) stiff; tan and brown |                   |                | <u>Sil_T</u> (ML) medium dense; gray and lan | -moist   | <u>SANDY LEAN CLAY</u> (CL) hard: dark gray; with<br>sand seams | ÷                                             | Bottom of Boring @ 25' | reter Level Eat: 又 Messured: 王 Penched: 王<br>refer observations: Seepage @ 13' while drilling. Water level<br>@ 23' and open upon completion. Water level @ 20' and<br>caved to 22' after 1 hour and 30 minutes. |
| $\bigcirc$ |               |                                                         |                        | 13                                             | עבא רבא                                                              | .AW                    |                                          |                   |                | <u>  </u>                                    | Þ        | H                                                               |                                               | 8                      | ser u                                                                                                                                                                                                            |
|            |               |                                                         | ]                      |                                                | usc                                                                  |                        | 5<br>5                                   |                   |                | W<br>W                                       |          | ರ                                                               |                                               | N                      | nd of                                                                                                                                                                                                            |
|            | C.            |                                                         |                        |                                                | SEndi                                                                | AA2                    |                                          | 723               |                |                                              |          |                                                                 |                                               | 1                      | Vieter Level<br>Vieter Level<br>(@ 23' and o<br>caved to 22'                                                                                                                                                     |
|            |               |                                                         |                        |                                                | (1)) HLC                                                             | 130 C                  | >                                        |                   | 4D             | 1                                            | <u>5</u> | 8                                                               |                                               | 26                     |                                                                                                                                                                                                                  |

| -                   |         | T                                                   |                        |                                                                                                |     |                                                                                    |                                                                                                                                               |  |  |  |  |
|---------------------|---------|-----------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                     |         |                                                     |                        | (# .taß 80                                                                                     |     | 440 Sieve = 1%                                                                     |                                                                                                                                               |  |  |  |  |
|                     |         | SURFACE ELEVATION<br>~285'                          |                        | CENK/2017                                                                                      |     |                                                                                    |                                                                                                                                               |  |  |  |  |
|                     | 05      |                                                     |                        | ST23T ABH                                                                                      |     | -<br>-                                                                             |                                                                                                                                               |  |  |  |  |
|                     | 5/24/05 |                                                     |                        |                                                                                                |     |                                                                                    |                                                                                                                                               |  |  |  |  |
|                     | ũ       |                                                     |                        | (%) 3A3IS 002# 500                                                                             | IW  | 2                                                                                  |                                                                                                                                               |  |  |  |  |
|                     |         | NA I                                                | 80<br>8)               | XEQNI YNDITEAJ9                                                                                | ⊡   | <u>6</u>                                                                           |                                                                                                                                               |  |  |  |  |
|                     |         |                                                     | ATTERBERG<br>LIMITS(%) | PLASTIC LIMIT                                                                                  | ᆋ   | φ                                                                                  |                                                                                                                                               |  |  |  |  |
| ļ                   | 1       | FAC                                                 | E S                    | TIMU DIVOL                                                                                     | Ľ   | ×.                                                                                 |                                                                                                                                               |  |  |  |  |
| DATE                |         | SUR                                                 | (%)                    | ) TNATNOO ARUTEKT                                                                              | ж   | Ş                                                                                  |                                                                                                                                               |  |  |  |  |
|                     |         |                                                     |                        | Liguid<br>Liguid                                                                               |     |                                                                                    |                                                                                                                                               |  |  |  |  |
|                     |         |                                                     |                        | i creat                                                                                        | 8   |                                                                                    | 0.5"                                                                                                                                          |  |  |  |  |
| Ł                   |         |                                                     |                        | 음 음 C                                                                                          | 8   |                                                                                    | 4.4                                                                                                                                           |  |  |  |  |
| L                   |         |                                                     | BORING TYPE: Dry Auger | Moleture (<br>and<br>erberg Lim<br>Molsture<br>Contenf                                         | Ő   |                                                                                    | 33.1                                                                                                                                          |  |  |  |  |
|                     |         |                                                     |                        | Natural Moleture Content<br>and<br>Atterberg Limits<br>afto Moleture Lic                       | đ   |                                                                                    | Š                                                                                                                                             |  |  |  |  |
|                     |         |                                                     |                        | atura<br>E                                                                                     | 20  |                                                                                    | ,<br>O                                                                                                                                        |  |  |  |  |
|                     |         |                                                     |                        | Paastlo<br>Limit                                                                               |     |                                                                                    | 8'02                                                                                                                                          |  |  |  |  |
| F                   |         |                                                     | Dry                    | RESSURE (1)                                                                                    | Н   |                                                                                    | 33 1                                                                                                                                          |  |  |  |  |
|                     | 0<br>5  | Magnolia Economic Development<br>Magnolia, Arkansas | Ш<br>Ц                 | NILURE STRAIN (%)                                                                              |     |                                                                                    | bte:<br>Coordinates: N 33 18'02.6", W 93 14'40.5"                                                                                             |  |  |  |  |
| Ż                   |         |                                                     | ₹<br>L                 | (Iat) HISNBAT                                                                                  |     |                                                                                    | afe:                                                                                                                                          |  |  |  |  |
| 2                   | 5       |                                                     | RIN                    | OMPRESSIVE                                                                                     |     |                                                                                    |                                                                                                                                               |  |  |  |  |
| C a Siniara So So I | à       |                                                     | BO                     | (pd) YTIRNED YS                                                                                | מו  |                                                                                    | Č Veni                                                                                                                                        |  |  |  |  |
| Į                   | 5       | ů<br>Ú                                              |                        |                                                                                                |     |                                                                                    |                                                                                                                                               |  |  |  |  |
| 19                  | 2       | Magnolia Economic<br>Magnolia, Arkansas             |                        | ● ଛ_ ♀_ ♀◆                                                                                     | 40  |                                                                                    |                                                                                                                                               |  |  |  |  |
| 1                   | 1       | ono<br>Kar                                          | 35                     | 00UNT<br>60<br>81)<br>3.0<br>(181)<br>(181)                                                    | 3.0 |                                                                                    |                                                                                                                                               |  |  |  |  |
|                     |         | P R                                                 | 37-0                   | LOW COUN<br>40 60<br>Qu (tsf)<br>20 3.0<br>PPR (tsf)<br>20 3.0<br>Torvene (tsf)                | 6   |                                                                                    |                                                                                                                                               |  |  |  |  |
|                     |         | olfa<br>olfa                                        | 17:                    | ELOW COUNT<br>40 E0<br>20 80<br>20 3.0<br>20 3.0<br>20 3.0<br>Torvena (1sf)                    | 2.0 |                                                                                    | ŝ                                                                                                                                             |  |  |  |  |
|                     |         | agr<br>agr                                          | 0                      | <sup>™</sup> 8 <b>₹ 2 <sup>™</sup> 2</b> ♦                                                     | 1.0 |                                                                                    | (iei)<br>(iei)                                                                                                                                |  |  |  |  |
|                     |         |                                                     | NO                     |                                                                                                |     |                                                                                    | ns:<br>(Bicws<br>neiron<br>Shear                                                                                                              |  |  |  |  |
|                     |         | PROJECT:                                            | PROJECT NO.: G 1737-05 | ATA                                                                                            |     |                                                                                    | Kay to Atbarevations:<br>N - SSPT Data (BicwarPh)<br>P - Pocket Penosiconelar (SS!)<br>T - Torvans (Stiezr (Isf)<br>L - Lab Vane Stiezr (Isf) |  |  |  |  |
| L                   |         | 2<br>2                                              |                        | HTONERI                                                                                        | S   |                                                                                    |                                                                                                                                               |  |  |  |  |
|                     |         | PR                                                  |                        | Î OTEI                                                                                         | ±   | ۲                                                                                  | tynax<br>≠ ar ar ar                                                                                                                           |  |  |  |  |
| Г                   |         |                                                     |                        |                                                                                                |     |                                                                                    |                                                                                                                                               |  |  |  |  |
|                     |         |                                                     |                        |                                                                                                | z   |                                                                                    | Þ                                                                                                                                             |  |  |  |  |
|                     |         |                                                     |                        |                                                                                                | 2   | LEAN CLAY WITH SAND(CL) medium stift<br>light red and tan<br>Bottom of Borthg @ 5' |                                                                                                                                               |  |  |  |  |
|                     |         | 50                                                  | S                      | MAIN OFFICE<br>1717 East Envin<br>Tyler, Texas 75702<br>(903) 585-4421<br>MATERIAL DESCRIPTION |     |                                                                                    | Parchad:<br>pletio1                                                                                                                           |  |  |  |  |
|                     |         | S                                                   | S                      |                                                                                                |     |                                                                                    | a du                                                                                                                                          |  |  |  |  |
|                     |         | i Hi i                                              |                        |                                                                                                |     |                                                                                    | ¥ C                                                                                                                                           |  |  |  |  |
|                     | ETT     | ENGINEERS &                                         | 201<br>201             |                                                                                                |     | WITH SAND(CL) med<br>lan<br>Bottom of Boring © 5                                   | Indi                                                                                                                                          |  |  |  |  |
|                     |         | <b>N</b>                                            | ź                      |                                                                                                |     |                                                                                    | Mesured:<br>open u                                                                                                                            |  |  |  |  |
|                     |         |                                                     | ŭ                      |                                                                                                |     | N N N N N N N N N N N N N N N N N N N                                              | I op                                                                                                                                          |  |  |  |  |
| 1                   |         |                                                     |                        |                                                                                                |     |                                                                                    | anc                                                                                                                                           |  |  |  |  |
|                     |         |                                                     |                        |                                                                                                |     |                                                                                    | Dry                                                                                                                                           |  |  |  |  |
|                     |         |                                                     |                        |                                                                                                |     |                                                                                    | 19                                                                                                                                            |  |  |  |  |
|                     |         |                                                     |                        | VATER LEVEL                                                                                    | ^   |                                                                                    |                                                                                                                                               |  |  |  |  |
|                     | F       |                                                     | 7                      | USC                                                                                            |     | 5                                                                                  | :sucl                                                                                                                                         |  |  |  |  |
|                     | F       | 5 2                                                 |                        |                                                                                                | - 1 |                                                                                    | Water Level<br>Water Observations:                                                                                                            |  |  |  |  |
|                     |         |                                                     | 1                      | SEIGHA                                                                                         |     |                                                                                    | Water Level                                                                                                                                   |  |  |  |  |
|                     |         |                                                     |                        | (I)) HI HE                                                                                     | 10  |                                                                                    | Well<br>Wat                                                                                                                                   |  |  |  |  |

| ſ                  |         |                                                         |                        | ЯғОЯМЕр<br>іде Раі. #)                                                                                   |                                                                     |                                                     |
|--------------------|---------|---------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|
|                    | 5/24/05 | SURFACE ELEVATION<br>~283'                              |                        | RER TESTS                                                                                                |                                                                     |                                                     |
|                    |         |                                                         |                        | NUS #200 SIEVE (%)                                                                                       |                                                                     | 1                                                   |
|                    |         | EVA                                                     | В<br>Ф                 | YEASTICITY INDEX                                                                                         | <u>a</u> a                                                          | 1                                                   |
|                    |         | 山王                                                      | ATTERBERG<br>LUMITS(%) | PLASTIC LIMIT                                                                                            | ط بچ                                                                | 1                                                   |
| Ľ                  | !       | RFAC                                                    | É 3                    | LIQUID LIMIT                                                                                             | 3                                                                   | 1                                                   |
| DATE               | 5       | เกร                                                     | (%                     | DISTURE CONTENT (                                                                                        | N 10                                                                | 1                                                   |
|                    |         |                                                         | BORING TYPE: Dry Auger | Natural Molstura Contant<br>and<br>Atterberg Limits<br>Prastic Molsture Liquid<br>Limit Contant Limit    |                                                                     | labs:<br>Coordinates: N 33 18/03 4" W 03 14'30 8"   |
|                    | 2       |                                                         | ς<br>Dγ                | SESSURE (1)                                                                                              |                                                                     | 8                                                   |
| Ľ                  | 2       |                                                         | LVPE                   | (%) ИІАЯТІЗ ЭЯЦЛІА                                                                                       |                                                                     |                                                     |
| RIN I              |         | nent                                                    | SNI                    | OMPRESSIVE<br>DMPRESSIVE                                                                                 |                                                                     | dinet.                                              |
| L<br>C<br>C<br>C   | 2       | nqole                                                   | BOR                    | RY DENSITY (pof)                                                                                         |                                                                     | Coor                                                |
| I OG OF BORING R-8 |         | CT: Magnolla Economic Development<br>Magnolla, Arkansas | CT NO.:                | ● BLOW COUNT ●<br>20 40 60 80<br>▲ Qu (!sf) ▲<br>1.0 2.0 3.0 4.0<br>1.0 2.0 3.0 4.0<br>● Torvæne (!sf) ● |                                                                     | over[F1]                                            |
|                    |         | PROJECT:                                                | PROJE                  | Q.131=<br>HTONEATC                                                                                       |                                                                     | Kay to Abbrevetions:<br>N . SPT Date (Bl            |
|                    |         |                                                         |                        |                                                                                                          | SANDY LEAN CLAY(CL) stiff; light brown and<br>Bottom of Borling @ 5 | ы                                                   |
|                    |         | 6                                                       | n                      | MAIN OFFICE<br>1717 East Erwin<br>Tyler, Texes 75702<br>(903) 595-4421<br>MAATEDIAL DESCONDITION         |                                                                     | hect.                                               |
|                    |         | ENGINEERS &                                             |                        |                                                                                                          | N CLAY(CL) stiff, light<br>Bottom of Boring @ 5                     | 🙄 lássurati T Parchad.<br>Des and annos secondadian |
|                    |         |                                                         |                        | OFFIC<br>ast Erv<br>xes 75<br>95-442                                                                     |                                                                     | H                                                   |
|                    | ί.ι     | <b>IGIN</b>                                             | JCNI                   | MAIN OFFICE<br>1717 East Erwin<br>Tyler, Texes 75702<br>(903) 595-4421<br>DJAL DEEC                      |                                                                     | er.                                                 |
|                    |         | ШŚ                                                      | 3                      |                                                                                                          | BOT                                                                 | l/easured:                                          |
|                    |         |                                                         |                        |                                                                                                          |                                                                     |                                                     |
| i<br>i             |         |                                                         |                        |                                                                                                          | SANDY Ted                                                           | 1                                                   |
|                    |         |                                                         |                        | WATER LEVEL                                                                                              |                                                                     | <u>n</u>                                            |
|                    | E       |                                                         |                        | usc                                                                                                      |                                                                     | -                                                   |
|                    | 2       |                                                         |                        | SAMPLES                                                                                                  |                                                                     | Water Lavel                                         |
|                    |         |                                                         | 1                      | DEPTH (ft)                                                                                               |                                                                     | Water Lavel                                         |

ETTL ENGINEERS

| 1 inc              | 20/67/0           | <b>ION</b><br>~295.0° |                        | other tests<br>Performed<br>(Paga Rai. #)                                                                        | +40 Sieve =1%                                                                     |                                                                 |   |      |                  |                          |  |
|--------------------|-------------------|-----------------------|------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|---|------|------------------|--------------------------|--|
| l l                | 8                 | M                     |                        | WINNS #500 SIEVE (%)                                                                                             | <del>수</del>                                                                      | -                                                               |   |      |                  |                          |  |
|                    |                   |                       | ų                      | Z PLASTICITY INDEX                                                                                               | ÷                                                                                 | 1                                                               |   |      |                  |                          |  |
|                    | ž                 |                       | 73C%                   | ד פראבדוכ נואוד                                                                                                  | ê<br>                                                                             | -                                                               |   |      |                  |                          |  |
| <b>.</b>           |                   | FAC                   | ATTERBERG<br>LIMITS(%) | ב<br>ד רוסחום רואוב                                                                                              | 30<br>X                                                                           | -                                                               |   |      |                  |                          |  |
| DATE               |                   | SUR                   |                        | MOISTURE CONTENT (                                                                                               | 8                                                                                 | 1                                                               |   |      |                  |                          |  |
|                    |                   |                       | BORING TYPE: Dry Auger | Natural Micisture Content<br>and<br>Attenterg Limits<br>Plastic Molsture Liquid<br>Limit Conteari Limit<br>P     |                                                                                   | utter<br>Coordinates: N 33 18'08.1", W 93 14'39.6"              |   |      |                  |                          |  |
|                    |                   |                       | 6                      | PRESSURE (1)<br>CONFINING                                                                                        |                                                                                   | 33 1                                                            |   |      |                  |                          |  |
| ()<br>()           |                   |                       | YPE                    | (%) ИГАЯТЕ ЗТРАЈИ (%)                                                                                            |                                                                                   | 2<br>                                                           |   |      |                  |                          |  |
| Ň                  | 1                 | IUA                   | NG T                   | (121) HTONARTS                                                                                                   |                                                                                   | nate                                                            |   |      |                  |                          |  |
| <u>N</u>           |                   | Lido                  | IORI                   | COWERESSIVE                                                                                                      |                                                                                   | 501di                                                           |   |      |                  |                          |  |
| LOG OF BORING B-10 | la Enonamia Davia | Magnolia, Arkansas    |                        | BLOWY COUNT ●<br>40 80 80 80<br>2.0 3.0 4.0<br>2.0 3.0 4.0<br>2.0 3.0 4.0<br>2.0 3.0 4.0<br>2.0 3.0 4.0          |                                                                                   | COC<br>COC                                                      |   |      |                  |                          |  |
|                    |                   |                       | NO                     | Z                                                                                                                | Z                                                                                 | Z                                                               | Z | NO.: | PROJECT NO.: G 1 | НТВИРАЯТР<br>АТАО<br>• 8 |  |
|                    |                   | H<br>H                | ä                      | HELD                                                                                                             |                                                                                   | S Ż Ĺ Ĺ                                                         |   |      |                  |                          |  |
|                    |                   | ENGINEERS &           | CUNSULIANIS            | MAIN OFFICE<br>1717 East Erván<br>Tyler, Texes 75702<br>(903) 585-4421<br>(903) 585-4421<br>MATERIAL DESCRIPTION | SANDY LEAN CLAY(CL) medium stiff; tan and<br>-very stiff<br>Bollom of Boring © 5' | Est.: 又 Massured: 又 Peacted: 又<br>Dry and open upon completion. |   |      |                  |                          |  |
|                    | 100               |                       |                        | WATER LEVEL                                                                                                      |                                                                                   | យី                                                              |   |      |                  |                          |  |
| E                  |                   | 5                     | ]                      | DSU DSU                                                                                                          |                                                                                   | gens                                                            |   |      |                  |                          |  |
|                    | 2                 |                       |                        | SAMPLES                                                                                                          |                                                                                   | Welzr Level<br>Water Observations                               |   |      |                  |                          |  |
|                    | ľ                 |                       | 1                      | (∄) HT930 ⇔                                                                                                      | ιο                                                                                | Walar Level<br>Water Obse                                       |   |      |                  |                          |  |

C

:

•

.

ETTL ENGINEERS

|                                                         |                                |                | KEY T                           | <u>o soi</u> | L GLASSIFICATIONS A                                                                  | ND SYMBOLS                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |
|---------------------------------------------------------|--------------------------------|----------------|---------------------------------|--------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                         | UNIE                           | ED 501         | LCLASSIFI                       | CATIO        | SYSTEM.                                                                              | TERMS CHARAC                                                                                                                                                                                                                                                                                                                                                               | TERIZING SOIL                                                                    |
| Major                                                   | Divisions                      | Letter         | Concerns ( White ? & other as I | Color        | Name                                                                                 | S-FROCHORC                                                                                                                                                                                                                                                                                                                                                                 | ······                                                                           |
|                                                         |                                | GW/            |                                 | Yellow       | Well-graded gravils or<br>gravel-sand sinctures, little<br>or no fines.              | SLICKENSIDED having inclined planes of<br>weakness that are slick and glossy in<br>appearance<br>FISSURED-containing shrinkage oracks,<br>maguently filled with fine sand or silt; usually<br>more or less worthoal<br>LAMINATED (VARVED)-composed of thin laye<br>of varying color and texture, disually grading<br>from sand or silt at the bettom to clay at the t      |                                                                                  |
|                                                         | GRAVEL<br>AND<br>GRAVELLY      | GP             |                                 |              | Reotly graded gravels or<br>gravel sand mixtures. Ittle<br>ar no fines               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
| COARSE                                                  | SOILS                          | GM .           |                                 |              | Silty gravels, gravel-sand-<br>clay inititutes,                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
| grained<br>Soils                                        |                                | ec             |                                 |              | Clayey gravals, gravel-sand-<br>clay mixtures.                                       | blacks or crumps on dryin                                                                                                                                                                                                                                                                                                                                                  | 10.                                                                              |
|                                                         | SAND                           | SW             |                                 | Red          | Well-graded sands or<br>gravely sands, little or no<br>fines                         | CALCAREOUS-containing appreciable quentitie<br>of calcium carbonate, generally nodular.<br>WELL GRADED baving wide range in grain size<br>and substantial amounts of all inermediate<br>perficie sizes.<br>POURLY GRADED predominantly of one grain<br>size (unifointly graded) ar having a range of<br>Sizes with some intermediate size missing (gap<br>or skip graded). |                                                                                  |
|                                                         | and<br>Sandy<br>Soils          | SP             |                                 |              | Poetly graded seads or<br>gravely seads, little or ne<br>fines                       |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
|                                                         |                                | SM             |                                 |              | Silty zands, sand silt<br>miscures                                                   |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
|                                                         |                                | SC             |                                 |              | Chayoy sands, sand-clay<br>mixtures                                                  |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
|                                                         | SILTS AND                      | ML.            |                                 | Groon        | silts with slight blasticity                                                         | SYMBOLS FOR<br>M/C = 15 - Natural mois                                                                                                                                                                                                                                                                                                                                     | ture content in percent                                                          |
| :                                                       | clays<br>Ll < 50               | CL             |                                 |              | tootganic clays of low to<br>modium plasticity, gravelly<br>clays, sandy clays, sity | $\delta = 95$ Dry unit weight in lbs/cu ft.<br>Du = 1.23 - Unconfined compression strength<br>in tens/sq. ft.                                                                                                                                                                                                                                                              |                                                                                  |
| EINED                                                   |                                | QL             |                                 |              | Organic silts and organic                                                            | Qc = 1,68 (21 psi) - Con<br>Strength at indicated later                                                                                                                                                                                                                                                                                                                    |                                                                                  |
| grained.<br>Soll's                                      | Silts Andi<br>Clays<br>UL > 50 | MH             |                                 | Blue         |                                                                                      | 51-21-30 - Liquid limit, Plastic limit and<br>Plasticity index.<br>30% FINER - Percent finer than No. 200 mes<br>Sieve.<br>30 B/F - Blows per foot, standard penetraties<br>bost.                                                                                                                                                                                          |                                                                                  |
|                                                         |                                | CH             |                                 |              | inorganic clays of bigh<br>plasticity, fat clays                                     |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
|                                                         |                                | 0H             |                                 |              | Organic clays of medium to<br>high, plasticity, organic silts                        | ▼ - Ground water table.                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |
| HIGHLY                                                  | ORGANIC<br>DILS                | PI             |                                 | Orange       | Peat and other highly<br>organic solls                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
|                                                         |                                |                | ភាម                             | RMS D        | SCRIBING CONSISTENCY C                                                               | F. SQIL (2)                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                         | COARSE G                       | AINED          | solls                           |              |                                                                                      | FINE GRAINED SOIL                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |
| Descriptive term Ng. BLOWS/FT.<br>Standard Pen.<br>Jest |                                |                |                                 |              | DESCRIPTIVE TERMS                                                                    | STANDARD PEN. TEST                                                                                                                                                                                                                                                                                                                                                         | UNCONFINED<br>COMPRESSION<br>TONS PER SOLFT.                                     |
| Nedium Dense 10-30<br>Dense 30-50<br>Kery Dense over 50 |                                |                |                                 |              | Veny Soft<br>Soft<br>Medium Stiff<br>Stiff<br>Very Stiff<br>Hard                     | < 2<br>2 - 4<br>4 - 8<br>8 - 15<br>75 - 30<br>over 30                                                                                                                                                                                                                                                                                                                      | < 0.25.<br>0.25 - 0:50<br>0.50 - 1.00<br>1.00 - 2:00<br>2:00 - 4:00<br>over 4:00 |
| Told class                                              | incation for "                 | 'Consist       | ency" is de                     | termine      | d with a 0.25" diam. panetr<br>SAMPLER TYPES                                         |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
|                                                         | Y.                             | Shalby<br>Tube | 4<br>                           | Rock<br>Gare | Split<br>Spoon                                                                       | Auger N<br>Reco                                                                                                                                                                                                                                                                                                                                                            | -                                                                                |